

European workshop on nanotechnologies & advanced materials for batteries

23rd February 2017, Brussels, Belgium

Presentation of the Project

Dr. Martin Krebs
VARTA Microbattery VMB

ntbat Excellence / Objectives

- According to the European Energy Storage Technology Development Roadmap towards 2030 (EASE/EERA) energy storage will be of greatest importance
- Storage of energy in electrochemical cells is a promising way, but need to be improved (performance, aging)

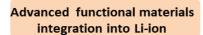
Table 1: system based on 26650 cells current performances and expected improvements at the end of Sintbat

Criteria	Current performance*	Project Sintbat**	Improvements by Sintbat [%]
Life time [number of cycles]	8,000***	10,000***	+25
CAPEX [€·kWh ⁻¹]	1,700	< 400	-76
OPEX [€·kWh ⁻¹]	0.25	< 0.09	-64
Capacity [Ah]	3.0	6	+100
Nominal voltage [V]	3.2	3.6	+13
Specific energy [Wh·kg ⁻¹]	115	260	+126
Energy density [Wh·L ⁻¹]	275	660	+140

^{*} values based on current performance of 26650 cells (LiFePO₄/Graphite) currently used in the Engion[©] energy storage system.

^{**} values based on Sintbat 26650 cells (NCM/Si-C)

^{***} at 70 % DOD



No	Name	Short name	Country	Project entry month ⁸	Project exit month
1	VARTA MICROBATTERY GMBH	VMB	Germany	1	48
2	COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES	CEA	France	1	48
3	THE UNIVERSITY OF WARWICK	UoW	United Kingdom	1	48
4	VARTA MICRO INNOVATION GMBH	VMI	Austria	1	48
5	EURA-CONSULT AG	EURA	Germany	1	48
6	UPPSALA UNIVERSITET	UU	Sweden	1	48
7	MATERIALS CENTER LEOBEN FORSCHUNG GMBH	MCL	Austria	1	48
8	VARTA STORAGE GMBH	VS	Germany	1	48
9	UNIWERSYTET WARSZAWSKI	UW	Poland	1	48

Sintbat Concept and Approach

Modelling Characterizations Tests under realistic conditions

Project development

Consortium complementary quality (know-how) & skills

Materials already demonstrated in Li-ion technology Project inputs

Markets already covered by decentralized energy storage device **Engion**©

SINTBAT

Industrial uptake analysis

Life cycle improvement

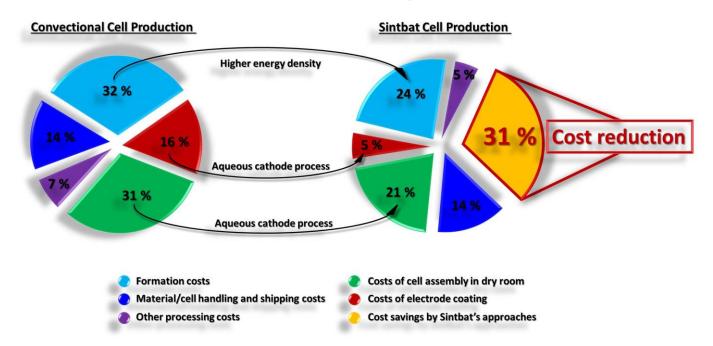
Long-term degradation understanding

Enhance energy capture

Project outputs & impacts

Capital expenditure reduction (CAPEX) and operational expenses reduction (OPEX)

Implementation of relevant advanced functional materials in energy technologies


Ready for domestic markets extension. Industrial scale

ntbat Costs for Energy Storage

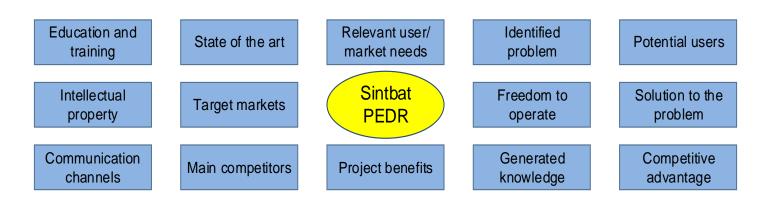
Reduction of the costs of cell production

comparison of costs of a conventional (state of the art) lithium-ion battery and the Sintbat battery optimized by improved electrode processing and implementation of advanced functional materials, e.g. silicon based on €/kWh

Sintbat Study of aging mechanism

- By analysis of cells (CEA, MCL, UU, UW, VMI, VMB)
- By modeling and simulation (UoW, MCL, UW)
- Testing in cells and batteries (VS, VMB)

Figure 7: 7 centers of competences studying aging mechanisms (source: CEA).


cell model

Dissemination, Exploitation Business plan (EURA)

- Involve potential users and interest groups
- Multiple Dissemination/Communication channels tailored to the corresponding target audience
- Raise awareness and spread innovation
- Collaborate with/involve other (European) projects
- create business opportunities and follow-up projects

Sintbat Conclusion

- A very promising project
- Covering important LIB aspects
- Contribution to the use of Green Energy
- For more detailed information please contact the scientific partners

It is challenging

Thanks for the attention